A computationally efficient denoising and hole-filling method for depth image enhancement
نویسندگان
چکیده
Depth maps captured by Kinect depth cameras are being widely used for 3D action recognition. However, such images often appear noisy and contain missing pixels or black holes. This paper presents a computationally efficient method for both denoising and hole-filling in depth images. The denoising is achieved by utilizing a combination of Gaussian kernel filtering and anisotropic filtering. The hole-filling is achieved by utilizing a combination of morphological filtering and zero block filtering. Experimental results using the publicly available datasets are provided indicating the superiority of the developed method in terms of both depth error and computational efficiency compared to three existing methods.
منابع مشابه
Depth Improvement for FTV Systems Based on the Gradual Omission of Outliers
Virtual view synthesis is an essential part of computer vision and 3D applications. A high-quality depth map is the main problem with virtual view synthesis. Because as compared to the color image the resolution of the corresponding depth image is low. In this paper, an efficient and confided method based on the gradual omission of outliers is proposed to compute reliable depth values. In the p...
متن کاملImage Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image
This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملHole-filling based on disparity map for DIBR
Due to sharp depth transition, big holes may be found in the novel view that is synthesized by depth-image-based rendering (DIBR). A hole-filling method based on disparity map is proposed. One important aspect of the method is that the disparity map of destination image is used for hole-filling, instead of the depth image of reference image. Firstly, the big hole detection based on disparity ma...
متن کاملBLADE: Filter Learning for General Purpose Image Processing
The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and use...
متن کامل